9. Beneficiation

Barytes is mined and sold directly after crushing and grinding. Sometimes high grade baryte produced from the mine is directly weed after hand sorting and seletive screening. In certain cases baryte is beneficiated for following reasons:

- i) To upgrade low grade baryte to produce concentrates suitable for drilling mud grade, etc.
- ii) High grade barytes are beneficiated to remove objectionable impurities such as iron, silica, etc. to produce super grade concentrate for filler grade in paints, pharmaceuticals and chemical use.
- iii) Baryte concentrates are produced from sulphide tailings as a by product.

9.1 General Methods

The characteristic physical properties of barytes such as high specific gravity between 4.2 and 4.5 and low hardness (2.5 to 3.5 Moh's scale) and its chemical inertness are advantageous to concentrate from associated impurities mostly quartz, calcite, dolomite, fluorite, clay, iron minerals and heavy sulphide minerals. The beneficiation techniques adopted mostly depend on the following factors.

- i) Grade of the ore
- ii) Nature of the gangue
- iii) Liberation size i.e size at which baryte is free from contaminating impurities.

The methods which are commonly followed to process barytes ores are simple to complex in nature depending on the factors mentioned above.

Some of the processes generally used are as follows:

- i) Crushing followed by hand shorting, dry screening etc.
- ii) Crushing followed by log washing or wet trommel screening.

- iii) Heavy media drums and cone separation.
- iv) Wet and dry jigging.
- v) Tabling and spiral concentration.
- vi) Classification by cone and rake classifier and hydrocycloning.
- vii) Dry and wet high intensity magnetic separation.
 - ix) Flotation.
 - x) Bleaching.

The most common method for beneficiation is jigging. Nearly 48 percent of ores that are beneficiated are treated by jigging and other gravity methods and neary 26 percent are beneficiated by floation. The rest is by hand sorting, screening etc.

Heavy media separation and jigging are normally employed on high grade and coarsely liberated ores. The general beneficiation methods normally adopted on the basis of liberalisation sizes are listed below:

Barytes Beneficiation

Size Range	General Methods Adopted
-50 mm + 12 mm size	HMS Jigging
-12 mm + 2 mm	Optical sorting
-2 mm + 0.2 mm	Tabling spiral concentration.
	Mag, Separation and
	Electro static separation
Below 0.2 mm and fines	Flotation and WHIMS

9.2 Beneficiation in the World

In the United States processing of baryte ores varies from district to district. In Missouri the ore is washed in trommel and then fed to jigs to reject quartz and dolomite contamination. In Georgia and Tennesee the ore is washed in log washers and screened to different sizes. The coarse is hand sorted. The intermediate is concentrated by jigs

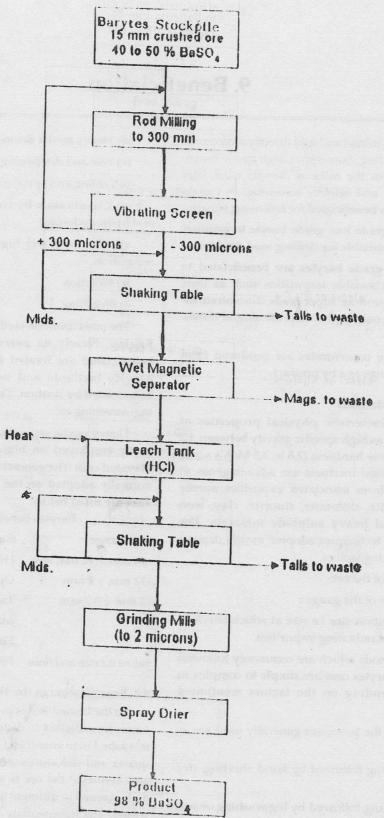


FIG-1: Flow Diagram, Nystone Chemicals Ltd. Debert, N.S.

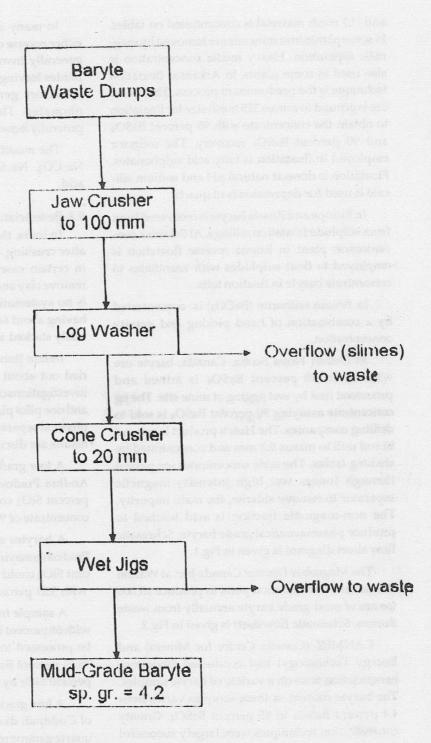


FIG.-2: Flow Diagram, Magcobar Dresser Canada, Inc., Baryte Recovery, Walton N.S., Waste Dumps.

and -10 mesh material is concentrated on tables. In some plants iron minerals are removed by magnetic separation. Heavy media concentration is also used in some plants. In Arkansas floatation technique is the predominant process. The coarse ore is ground to minus 325 mesh size for floatation to obtain the concentrate with 95 percent BaSO₄ and 90 percent BaSO₄ recovery. The collector employed in floatation is fatty acid sulphonates. Floatation is done at natural pH and sodium silicate is used for depression is of quartz.

In Europe and Russia baryte is recovered from from sulphide floatation tallings. At Salairisk concentration plant in Russia reverse floatation is employed to float sulphides with zaanthates to concentrate baryte in floation tails.

In Britain witherite (BaCO₃) is concentrated by a combination of hand picking and gravity concentration.

At Debert Nova Scotia, Canada, baryte ore with 40 to 50 percent BaSO₄ is mined and processed first by wet jigging at mine site. The jig concentrate assaying 90 percent BaSO₄ is sold to drilling companies. The Hutch product is ground in rod mill to minus 0.3 mm and concentrated by shaking tables. The table concentrates are passed through Jonees wet high intensity magnetic separator to remove siderite, the main impurity. The non-magnetic fraction is acid leached to produce pharmaceutical grade baryte. Schematic flow sheet diagram is given in Fig.1.

The Magcobar Dresser Canada Inc. at Walton mines has a beneficiation plant to produce 15,000 tonnes of mud grade baryte annually from waste dumps. Schematic flowsheet is given in Fig.2.

CANMET (Canada Centre for Mineral and Energy Technology) had conducted laboratory beneficiation tests on a variety of baryte samples. The baryte content in these samples varies from 4.4 percent BaSO₄ to 85 percent BaSO₄. Gravity concentration techniques were largely successful in concentrating baryte ores to above 90 percent BaSO₄. Failure to achieve 90 percent BaSO₄ was generally related to low grade head samples e.g. below 30 percent BaSO₄ and fine interlocking.

In many samples baryte is concentrated by either reverse or direct flotation. Reverse flotation generally involves floatation of base-metal sulphides leaving a concentrated baryte tailing. The collectors generally preferred are alkyl sulphonates. The collector concentration was generally between 250 and 500 g/t.

The modifiers are depressants used include Na₂CO₃, Na₂SiO₃ Quebracho, BaCl₂ and citric acid.

9.3 Beneficiation in India

In India, the mined baryte is shipped directly after crushing, hand sorting and screening. Only in certain cases air ellutriation is employed to remove clay and shale impurities. However, there is no systematic processing of low grade baryte having about 60-70 percent BaSO₄ which are normally stacked as low grade dumps.

Indian Bureau of Mines had successfully carried out about 15 laboratory scale beneficiation investigations on different types of baryte samples and one pilot plant investigation adopting various physical separation processes. Some of the salient results are discussed below.

A low grade barytes sample from Tadapatri Andhra Pradesh with 64 percent BaSO₄ and 34 percent SiO₂ could be beneficiated to produce a concentrate of 94 percent BaSO₄ by tailing alone.

A barytes sample from Khammam, Andhra Pradesh assaying 89 percent BaSO₄ and 8.8 percent SiO₂ could be upgraded to 93 percent BaSO₄ with 3.21 percent SiO₂ by hydroclassification.

A sample from Udaigiri, Nellore district A.P. with 68 percent BaSO₄ and 20 percent Fe₂O₃ could be processed to produce a concentrate assaying 95.61 percent BaSO₄, 1.51 percent Fe₂ O₃ and 1.77 percent SiO₂ by dry magnetic separation.

A low grade sample from Mangampeta area of Cuddpah district A.P. with finely interlocked quartz gangue required flotation at very fine grind (about 9-percent -325 mesh) to produce concentrate useful for drilling mud grade. The floatation was done at natural pH with three or four cleanings using sodiumoleate or Neo fat as collector.

The low grade barytes beneficiated by floatation varying in BaSO₄ content from 66 percent to 78 percent and SiO₂ from 12 percent to 23 percent. The concentrates assay above 94 percent BaSO₄ with 2.5 percent SiO₂. The recoveries of BaSO₄ were above 80 percent.

Indian Bureau of Mines has also been successful in recovering mud grade barytes as by-product from lead-zinc ores of Dariba Rajpura containing as low as 13 percent BaSO₄.

Barytes concentrates obtained by froth floatation being non water wettable were unsuitable for use in oil well drilling industry. This problem was tackled successfully by IBM and floatation concentrates were made water wettable by heating/acid treatment.

The summary of salient results of beneficiation tests work carried out by IBM given in Annexure-1 (at this chapter end).

9.4 Need and Scope for Beneficiation of Low Grade Barytes

India is the third largest producer of barytes and so far, high grade barytes is mined and exported. Nearly 30 percent of the low grade barytes assaying around 60 percent BaSO₄ are dumped as waste material. These low grade barytes which are amenable to beneficiation are not utilized. More over these waste dumps have become environmental hazards. The specific gravity of low grade

barytes ranges from 3.5 to 4.1 with no marketability. This is the right time that these low grade barytes needs to be beneficiated to produce mud-grade concentrates to conserve our valuable natural resources. There is a need to establish beneficiation plant of suitable capacity to trel low grade ore as well as some of the high frade ore to produce super grade concentrates for pharmaceutical, chemical and paint industry. Indian exporters of barytes have already entered into a memorandum of understanding with M/s. CARPCO, U.S.A. for setting up of a beneficiation plant at Magampeta.

References

- 1. Role of IBM in the field of Ore Dressing Vol.I (1956-1980) Vol.II (1981-88) & Vol.III (1991).
- 2. MUDD SW Series "SME Mineral Processing Handbook" Vol.II, 1985, pp 29.6.
- 3. Callings RK & ANDREWS PRA, (1988): Summary Report No.1 on Baryte, Mineral Processing Laboratories CANMET, Report 88-6.
- 4. Barytes Mineral Facts and problems 1985 & Barytes availability market economy countries in 1986, IC/9115 of USBM.
- 5. WATSON 1 (1978) : Industrial Minerals, Bastas doubles barytes capacity at Antalya, p.55.

DETAILS OF BENEFICIATION OF BARYTES CARRIED OUT BY IBM

	ų d		
Process adopted	Hydroclassification	Tabling	Tabling
% A.	25.22	78.80	59.28
Recovery %	BaSO4 92.92	BaSO4	BaSO4
Concentrate Assay %	92.91	94.02	94.04
Co	BaSO ₄ SiO ₂	BaSO4	BaSO4
Wt%	8.68	56.29	42.62
Mineralogy	Valuable Mineral Barytes Gangue	Valuable Mineral Barytes Gangue Quartz	Valuable Mineral Barytes Gangue
nal	89.85 8.80 0.80	64.00 34.20 0.95 Trace	0.48
Original Assay %	BaSO ₄ 89.85 SiO ₂ 8.80 Fe ₂ O ₃ 0.80 Quartz Goethite	BaSO ₄ SiO ₂ Fe ₂ O ₃ CaO	LOI BaSO ₄
Title of Investigation	Beneficiation of Barytes from Khammam, A.P.	Beneficiation of low grade barytes from Tadapathri A.P.	Beneficiation of finely ground barytes from Tadapathri, A.P.
No.	:	d	, m

SI.	Title of	Original	nal ~	Mineralogy		පී	Concentrate			Process adopted	
S S	Investigation	Assay %	% ^		Wt%	As	Assay %	Recovery %	y %		
						e.					,
4	Beneficiation of	BaSO4	00.99	Valuable Mineral	55.90	BaSO4	69:66	BaSO ₄	79.20	Flotation at a	
	a low grade	SiO ₂	23.30	Barytes	- 7	SiO ₂	2.38			grind of 88% 325	
	barytes	Al ₂ O ₃	6.02	Gangue						mesh & Neofat &	
	sample from	Fe ₂ O ₃	2.62	Quartz						Pineoil as	
	Mangampet area	CaO	0.94							collector &	
	Cuddapah Dist.,	MgO	0.11							frother	
	A.P.	101	0.77		H						
								*			
	Beneficiation of	BaSO4	68.11	Valuable Mineral	60.80	BaSO4	95.61	BaSO4	82.12	Dry magnetic	
	low grade barytes	SiO ₂	7.56	Barytes		Fe ₂ O ₃	1.51			separation at	
	sample from	Al ₂ O ₃	1.18	Gaugue Magnetitie		SiO ₂	1.77			35 mesh grind	
	Kodanada Rama	Fe2O3	20.55	Goethite Hematite		Al ₂ O ₃	0.15				
	barytes Mines.,	[0]	1.35	Lepidocrocite		101	0.50				
	Udaigiri Taluq,			& quartz							
	Nellore Dist., A.P.										
	Beneficiation or	BaSO4	77.14	Valuable Mineral	68.88	BaSO4	95.45	BaSO4	85.00	Flotation at a	
	low grade barytes	SiO2	15.74	Barytes		SiO ₂	.2.70			grind of 97% 325	
-	sample from	Fe ₂ O ₃	2.33	Gangue						mesh & Sod. Oleate	
	Vijayalaxmi	Al ₂ O ₃	2.73	Quartz						as collector	

Si.	Title of	Original	nal	Mineralogy		0	Concentrate			
No.	Investigation	Assay %	2/20	6	Wt%) «	Assay %	Recovery %	77 %	Process adopted
	C L W A									
	pir INO.2 gray									
	barytes mine									
	Mangampet area		ý.							
	Cuddapah Dist.,									
	A.P.									*
	Recovery of	BaSO4	9.02	Valuable Mineral	6.04	BaSO4	34.89	BaSO,	53.93	Modern to an inches
	barytes from the	BaCO3	5.30	Barytes &		Bacos	6.53			of 899, 200 mesh
	tailings obtained	e e	225	Whiterite						Sod Oleans & Cod
	after bulk	Zn	10.26	Gangue						Petroleum entfoarte
	flotation of	SiO2	40.70	Sohalarite						as rescents
	sulphides from	2	8.04	pyrite galena						
	calc silicate	Al ₂ O ₃	128	calcite						
	sample from									
	Dariba-Rajpura,									
	Rajasthan									
	(Hindustan Zinc									
	Ltd.)									

SI. No.	Title of Investigation	Original Assay %	nal 7%	Mineralogy	Wt%	Col	Concentrate Assay %	Recovery %	% %	Process adopted
	Recovery of	BaSO4	5.09	Valuable Mineral	5.09	BaSO4	74.79	BaSO4	30.78	Flotation
	barytes from the	BaCO3	3.02	Barytes &		BaCO3	11.57	1		
	tailings obtained	Pb	1.98	· Whiterite						
	after bulk	Zn	10.66	Gangue						
	flotation of	SiO ₂	42.44	Sphalarite pyrite						
	sulphides from	Fe	89.6	gelena quartz						
	calc silicate	Al ₂ O ₃	2.34	& calcite						
	graphite-mica-									
	chist (85:15)									
	mixed sample from						1			
	Dariba-Rajhara							* CALLES		
	mines, Rajasthan									
	(Hindustan Zinc Ltd.)	(')								
	Beneficiation of	BaSO4	88.55	Valuable Mineral	77.25	BaSO4	98.00	BaSO4	86.09	Flotation at a grind
	barytes sample	SiO ₂	5.40	Barytes		Fe ₂ O ₃	0.28			of 85.7% 200 mesh
	from Madurai,	Fe ₂ O ₃	2.00	Gangue		SiO ₂	0.32			with lactic acid
	Tamil Nadu	CaO	0.57	Quartz, Mica						Sod. Oleate & pineoil
	for use in	MgO	0.32	limonite						as reagents
	chemical industry									

Process adonted		Flotation at a grind of 90% 325 mesh with Sod.Oleate as collector.	Flotation at a grind of 84% 200 mesh with Sod. Petroleum sulfonate as collector
	Kecovery %	BaSO4 92.24	BaSO4 61.8
Concentrate	Of factors	94.23 9 0.81 3.10 4.22	5.06
Wt%		76.55 BaSO ₄ Fe ₂ O ₃ SiO ₂ Sp.Gr.	8.8 BaSO4
Minetalogy		Valuable Mineral Barytes Gangue Quartz,clay & limonite	Valuable Mineral Barytes quartz,calcite amphibole & dolomite
Original Assay %		BaSO ₄ 78.20 SiO ₂ 12.35 Fe ₂ O ₃ 2.11 Al ₂ O ₃ 4.40 Sp.Gr. 3.90	BaSO ₄ 7.62 BaCO ₃ 4.18 Fe 2.76 SiO ₂ 50.26 Al ₂ O ₃ 6.25 CaO 6.69
Title of Investigation		Beneficiation of a low grade barytes sample from Satter barytes mine, Mangampet area, Cuddapah Dist., A.P.	Recovery of BaSO, barytes from a BaCO lead-zinc ore Fe sample of SiO ₂ Rajpura-Dariba Al ₂ O ₃ mines, Rajasthan CaO
हिं दे			i k

S. S.	Title of Investigation	Original Assay %	inal y %	Mineralogy	Wt%	Concentrate Assav %	trate	Recovery %	Process adopted	1
									A.	1
	(for HZL.)	Mgo	3.00							
		2	1.78							
		42	6.92							
		J	60.0							
		s	10.75							
2	Dilot Dient	Cooper	74 45							
4		TO COM	74.45	Valuable Mineral	382	Baso ₄ 97	27.97	BaSO ₄ 48.9	48.9 Flotation	
	beneficiation	SiO2	18.17	Barytes		٠.				
	studies on a low	3 2	200	Gangue						
	grade barytes	æ	121	Quartz, clay						
	sample from,	Alzos	3.47	limonite						
	Mangampet area,									
	Cuddapah Dist.,									
	A.P.									
	(for Gimpex Pvt.									
	Ltd., Madras)									